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ABSTRACT: Phytophthora infestans (Montagne) de Bary, the fungus that causes late blight in potatoes,
can practically completely destroy all of the above-ground sections of sensitive cultivars in the presence of
favourable environmental factors and in the absence of any preventative measures. Understanding and
contrasting the four nonlinear models and empirical model for disease progressive curves of five year data
are the main goals of the current study. Data on the progress of the late blight were investigated
statistically. The area under the disease progress curve (AUDPC), disease rates, and disease progression
curves were estimated. The estimation of the Akaike Information Criterion (AIC), Bayesian Information
Criterion (BIC), R-square, MAE, MAPE, RMSE, standard error, and other regression parameters was
done. The monomolecular model and the logistic model yielded the lowest standard errors and the highest
R-square values. Additionally, the results demonstrated that, for each year, the monomolecular model and
the logistic model with the lower AIC and BIC values provided a good fit for the disease progression curve.
The area under the disease progression curve was calculated to determine the degree of response to the
disease, and the monomolecular model and logistic allow computation of the disease progression rate. 2018
was the lowest prevalence of the Phytophthora infestans disease ever observed. A maximum area under the
disease progress curve (AUDPC) value was determined in 2021. Breeding programmes targeted at creating
varieties with improved resistance to Phytophthora infestans may benefit from year or varieties with low
disease incidence. Empirical models showed the partial occurrence of the Late Blight Disease Incidence, so,
we can conclude that all these model cannot fit for this region. Potato blight forecasting is important to
protect the potato yield. If the favourable weather conditions can be forecast and communicated to the
growers early with sufficient time for a control sprayed, the crop will be protected.
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INTRODUCTION

An epidemic of disease is the progress of the disease in
time and space. An epidemic can be defined as a
change in disease (incidence or severity) in a host
population over time and space (Kranz, 1974). The
fundamental way of depicting a plant disease epidemic
is to plot disease level at several times or distances. The
plot of disease versus time, the disease progress curve,
summarizes the interaction of pathogen, host, and
environment in disease development (Van der Plank,
1963; Kranz, 1974). Quantification of disease progress
curves, as well as other biological phenomena, is done
with the use of mathematical or statistical models. The
value of a model is its "potential for bringing out
relationships which are not obvious from the data
alone" (Pruitt et al., 1979). Although there are many
different models that can be used to explain a disease
progression curve, the one that is usually used has
nonlinear features. The biological/statistical
consideration of models and modeling activity is

predominate in the field of growth curve analysis
(Madden, 1992), a discipline that dates back,
philosophically, to the work of Malthus (1986) and,
more directly to that of Verhulst (1838); Gompertz
(1825). One area of this study, with a much shorter
history, focuses on the analysis of plant disease
epidemics and their disease progression curves.
Potato is the world’s major non-cereal food crop and
the fourth largest crop after maize, rice and wheat, with
production. India produced over 48 million tones
of potato in 2019-20 with West Bengal accounting for
19.41 per cent of the produce. West Bengal, the second
largest producer of potatoes in the country, is likely had
a bumper crop this year 2020-2021. This state, which
produces close to 110-115 lakh tones (2019)  of the
tuber each year, is estimated produce close to just 90
lakh tones 2020, (Potato PRO 2020)  this year. Potato
cultivation in Bengal is spread over close to 4.6 lakh
hectares of land. Hooghly, Burdwan, Bankura, East
Midnapore and west Midnapore are key growing areas.
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Potato late blight (PLB) caused by Phytophthora
infestans (Mont.) de Bary  is amongst the most
destructive diseases of potato crops , due to its fast
reproductive cycle and aggressiveness, It can quickly
result in the ultimate destruction of the crop, either in
the field or in storage after harvest, if it is not handled.
The disease was originally identified in West Bengal's
Darjeeling district in 1883. The disease was initially
identified in the plains during the Hooghly districts
between 1898 and 1900. The disease is still present
today in West Bengal's plains. Every year, it takes a
mild to moderate form, but on rare instances, it takes a
severe form and becomes an epidemic. Estimated yield
losses in the plains range from 10 to 75 percent (Dutt,
1979).
Disease prediction models are used to explore the
probability of disease outbreaks, providing significant
new information for potato growers. This enables
farmers to estimate risk, cost and benefit ratios, site
selection, selection of propagative material and
implementation of a timely disease management plan to
protect the crop. Predictive models allow farmers for
the pathogen to forecast when the environment is
favorable for late blight infection (Morales and Hewitt
2004; Naerstad et al., 2007).
To describe how a disease spreads over time and how
the majority of plant diseases change significantly after
a specific amount of time, the disease progress curve is
measured using statistical models. Models are
frequently used to explain temporal disease epidemics
and disease progression (Xu, 2006). Progress curve is
well-fitted with nonlinear models (Lalancette and
Hickey 1986; Contreras et al., 2009) and these models
are commonly used to describe temporal disease
epidemics (Xu, 2006). One model may match a
particular disease better than another based on the
nature of the disease progress curves. All models may
not fit well to specific diseases, and a given model may
not fit to all plant diseases. The best fitted model for
potato Late Blight disease can be used to estimate the
area under the disease progress curve (AUDPC) and
disease progress rate for determining the potato

cultivars reaction to the potato Late Blight disease.
However, no effort has been reported so far regarding
the use of disease progress curve to select the best fitted
model for Late Blight disease in potato. Hence, the
present study was conducted to identify the goodness of
fit of the nonlinear models (exponential,
monomolecular, logistic and Gompertz models) and
empirical (Beaumont, cook, hyre) to the potato Late
Blight disease (Phytophthora infestans f.p. potato)
disease.
Description of the study area. The experiment was
conducted at Agricultural Farm, Pundibari, UBKV,
West Bengal (26°39` N Latitude, 89° 39`E Longitude
and 50 m amsl) during 2018-2022 crop seasons when
there was severe incidence of late blight in the state.
Five different date of planting was done for every year.
The variety viz., Kufri Jyoti received from Directorate
of Farm, UBKV were used for this experiment. The
crops are planted in randomized block design with 4
replications and 5 treatments at spacing of 60 cm × 30
cm in a plot size of 3 m × 3m.
Weather parameters were collected from the automatic
weather station installed at AMFU, Cooch Behar
Centre, UBKV, Pundibari, West Bengal and converted
into the required format. Weather parameters
(precipitation (mm), maximum temperature (°C),
minimum temperature (°C), relative humidity (%), dew
point (°C)) will be collected from the automatic
weather station installed at AMFU, Cooch Behar
Centre, UBKV, Pundibari, West Bengal
The nature of the spread of the disease was studied
through visual observation from the initiation of the
disease at seven days interval till after first appearance
of symptoms. The disease was quantified using disease
grading 0-9 scale suggested by McKinney (1923)
where, 0 = Healthy Leaf, 1 =<1% area of leaf infected,
3= 1-10% area of leaf infected, 5=11-25% area of leaf
infected, 7=26-50% area of leaf infected and 9=90%
more than 50% area of leaf infected.
The percent disease intensity (PDI) was calculated
as given below (Wheeler, 1969).

PDI = Total sum of numerical ratingsnumber of leaves observed × maximum disease ratings × 100
For this purpose, five plants were selected randomly
from each plot and observations were taken from late
blight infected leaves up to after first appearance of
symptoms at every 7 days interval.
1. Fitting disease progress curves using nonlinear
models. The Potato Late Blight disease has a polycyclic
disease cycle with multiple cycle of infection during the
epidemic with populations of pathogens increase in a
multiplicative rather than an additive way that allow the
lesions data fitted well to nonlinear model (Arneson,
2011; Gilligan, 1985). There are several nonlinear
model are used to described the Potato Late Blight
disease progress such as exponential model,
monomolecular model, logistic model and Gompertz
model (Madden et al., 1992). Table 1 described the
disease progress curves and estimated model
parameters for comparing epidemics.

Curve-fitting using Levenberg Marquardts
algorithm. Curve fitting on the disease severity
progress curve is done using R software. R package
(Moddelr) fits nonlinear models by minimizing the
error sum of squares. However, minimizing the
residual sum of squares gave normal equations with
nonlinear in the parameters which are not possible to
solve nonlinear equations exactly. Therefore, the
alternative is to obtain approximate analytic solutions
by employing iterative procedure such as Levenberg-
Marquardts algorithm (LM) Method.
Model selection using information criteria
Akaike’s Information Criteria (AIC). The Akaike
Information Criterion (AIC), a measure that is widely
accepted for measuring the validity within a cohort of
nonlinear models and frequently used for model
selection (Burnham and Anderson 2003).
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The general form for calculating AIC:
= −2. (likelihood) + 2

Where, ln is the natural logarithm, (likelihood) is the
value of the likelihood and K is the number of
parameters in the model.
AIC can also be calculated using residual sums of
squares from regression:

= . ln + 2
Where n is the total number of observations (data
points), and RSS stands for residual sums of squares.

Table 1: Summary of differential and integrated equations for common growth curve models used in
plantdisease epidemiology.

Model The disease progress model, y The rate of disease progress,
Estimated
parameter

Exponential = ∗ ( ) = exp ( ∗ ) is the
initial disease

intensityMonomolecular = ∗ ( − ) ( ) = − ( − )exp (− ∗ )
Logistic = ∗ (1 − ) ( ) = /(1 + − 1 exp (− ∗ )

r, k are the
rate parameter

Gompertz = ∗ (ln( ) − ln( )) ( ) = ∗ ( exp (− ∗ )
Bayesian Information Criterion (BIC): The Bayesian
Information Criterion (BIC), which gives a higher
penalty on the number of parameters (Schwarz, 1978) is
given as follows:
The BIC is based on the residual sum of squares (RSS),
which
BIC = n. ln( / ) + . ln ( )
k is the test's model's number of parameters. The model
with the lowest BIC should always be chosen when
choosing between various models. The BIC is both an
increasing function of k and an increasing function of
error variance two. In other words, the value of BIC
rises as the number of explanatory variables and
unexplained variability in the dependent variable rise.
Therefore, a smaller BIC suggests either a better fit,
fewer explanatory factors, or both.
2. Disease Rates (r): The progress curves have been
used for estimating a rate of late blight. In this study r is
the rate inherent in the production and spread of
pathogen propagules (Van der Plank, 1963).
3. Area under Disease Progress Curves (AUDPC):
The area under disease progress curves (AUDPC) was
calculated using all data available. This calculation is

the integral over time of the percentage of late blight on
potato foliage as exemplified by Grunwald et al., 2001;
Campbell and Madden, 1990 and Van der Plank, 1963).
The AUDPC has been used extensively in plant
pathology research, particularly in the evaluation of
crop loss and evaluation of partial or quantitative
resistance.

AUDPC=∑ ( ) ( − )
Empirical model for late blight model: Three

systems were selected to describe the occurrence of late
blight epidemic by combination of weather conditions
factors (Percent Disease Incidence). The first system
was Beaumont (1947) system, which combines between
minimum temperature 20°C and minimum RH 75% for
at least 48 hours. The second system was Cook (1947)
system (Moving 7-day), which combines between
rainfall at least 3 mm and 7-day average daily
temperature not less than 23.9°C. The third system was
Hyre (1954) system (Moving graph), which combines
between average 5-day temperature below 25.5°C,
minimum temperature not less than 7.2°C and total
rainfall over 10 day at least 3 mm.

Fig. 1. Disease progress curve for the incidence of Phytophthora infestans disease on different years 2019-2022.
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RESULTS AND DISCUSSION

Phytopthora infestations are a common and aggressive
saprophyte in the soil, according to the disease's
progression curve. It caused by the oomycete pathogen
Phytophthora infestans, which resembles a fungus
(Erwin and Ribeiro 1996). It can infect and destroy the
leaves, stems, fruits, and tubers of potato and plants
(Fehrmann and Dimond 1967). It survives in the soil
debris as a mycelium and all spore types, but is most
commonly recovered from the soil as chlamydospores.
Potato Late Blight (Phytophthora infestans) is one of
the most important potato leaf and tuber diseases that
cause sudden death of plants and causing heavy
economic losses. Several potato cultivars widely grown
in potato cultivated areas do not possess high level of
resistance to potato late blight disease. Contact
fungicides will be the backbone of any late blight spray
program because they are cost effective.
In the absence of the oospore stage, P.
infestans survives between potato crops as mycelium in
infected tubers or potato fruit. If infected tubers are left
behind at harvest or dumped at the edges of fields,
sporangia may be produced on the infected tubers or
new volunteer sprouts that appear the following spring.
Sporangia are transported to healthy potato foliage by
air currents. Freshly cut seed tuber surfaces are

particularly vulnerable to infections from airborne
spores in contaminated storage facilities, which can
lead to stem sores that can kill the plant. Local infection
may happen if infected seed is planted. The pathogen
moves through the tissues of infected tubers, and clonal
lineages frequently reproduce asexually (Xu, 2006).
Comparison between non-linear models. Statistical
significance of the parameters of the non-linear model
was determined by the evaluating the 95% confidence
intervals of the estimated parameter. The null
hypothesis H0: (all the parameters = 0) was rejected
when 95% confidence intervals of the estimated
parameters does not include zero.
Next, the models were diagnosed using error analysis.
The error analysis is performed to analyze difference
between the error values and the estimated values of
observation. This analysis is able to investigate the
goodness of fit of the nonlinear models graphically and
some of the plots are illustrated in the figures of this
chapter Fry (1975).
The scatter plot of the error is important in deciding
whether the residual values are uniformly distributed,
there is no systematic trend of the residual values or the
variance is constant or not. If the error plot showed that
the errors have a homogenous variance then the models
are adequate to model the data.

Table 2: Parameter estimates of the Logistic, Gompertz, Monomolecular and exponential growth models for
late blight of potato data for the year 2018.

Model Parameter Estimation Asymptotic standard
Error

95% confidence inter
Lower Bound Upper bound

Exponential
y0 6.253 0.476 5.336 7.306

r 0.026 0.001 0.024 0.029

Monomolecular
k 94.239 22.794 89.136 99.953

y0 -60.320 19.008 -71.108 -57.746

r 0.015 0.006 0.003 0.026

Logistic

k 54.772 2.292 50.908 60.994

y0 0.850 0.231 0.476 1.473

r 0.074 0.006 0.062 0.086

Gompertz

k 43.230 6.472 40.299 49.976

y0 0.000 0.000 4.588 5.251

r 0.094 0.116 0.031 0.129

Table 3: Parameter estimates of the Logistic, Gompertz, Monomolecular and Exponential  growth models for
late blight of potato data for the year 2019.

Model Parameter Estimation Asymptotic standard
Error

95% confidence inter
Lower Bound Upper bound

Exponential
y0 9.947 0.459 9.048 10.910

r 0.019 0.001 0.018 0.020

Monomolecular
k 186.731 131.489 179.987 190.654

y0 -10.545 4.660 -15.62 -9.986

r 0.004 0.004 0.002 0.143

Logistic

k 64.709 6.332 65.913 71.921

y0 5.134 0.867 3.442 7.290

r 0.041 0.005 0.031 0.052

Gompertz

k 78.462 11.769 61.786 81.296

y0 2.524 0.978 1.881 2.950

r 0.023 0.004 0.014 0.032
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Table 4: Parameter estimates of the Logistic, Gompertz, Monomolecular and Exponential  growth models for
late blight of potato data for the year 2020.

Model Parameter Estimation Asymptotic standard Error
95% confidence inter

Lower Bound Upper bound

Exponential
y0 5.699 0.412 4.894 6.617
r 0.030 0.001 0.028 0.032

Monomolecular
k 322.325 787.123 312.466 335.893
y0 -37.754 24.189 -41.785 -30.056
r 0.004 0.010 -0.0034 0.008

Logitic
k 384.000 1098.000 374.663 389.528
y0 5.094 1.905 3.990 8.683
r 0.033 0.011 0.011 0.060

Gompertz
k 131.804 73.685 127.471 139.562
y0 0.533 0.900 3.098 6.262
r 0.024 0.011 0.006 0.0305

Table 5: Parameter estimates of the Logistic, Gompertz, Monomolecular and Exponential  growth models for
late blight of potato data for the year 2021.

Model Parameter Estimation Asymptotic standard Error
95% confidence inter

Lower Bound Upper bound

Exponential
y0 7.179 5.068 1.258 2.057
r 4.610 9.541 0.046 0.053

Monomolecular
k 77.688 5.122 69.200 91.813
y0 -10.541 2.266 -15.525 -6.124
r 0.014 0.001 0.010 0.018

Logistic
k 55.799 1.317 53.363 58.991
y0 6.751 0.455 5.843 7.7424
r 0.050 0.002 0.045 0.055

Gompertz
k 61.497 2.001 57.888 66.438
y0 3.617 0.530 2.601 4.801
r 0.032 0.002 0.028 0.036

Table 6: Parameter estimates of the Logistic, Gompertz, Monomolecular and Exponential  growth models for
late blight of potato data for the year 2022.

Model Parameter Estimation Asymptotic standard Error
95% confidence interval

Lower Bound Upper bound

Exponential
y0 5.699 0.412 4.894 6.617
r 0.030 0.001 0.028 0.032

Monomolecular
k 322.325 787.123 320.484 328.654
y0 -37.754 24.189 -41.092 -23.986
r 0.004 0.010 0.001 0.054

Logistic
k 384.000 1098.000 366.190 389.664
y0 5.094 1.905 3.924 7.597
r 0.033 0.011 0.021 0.069

Gompertz
k 131.804 73.685 127.413 135.607
y0 0.533 0.900 0.334 1.436
r 0.024 0.011 0.002 0.034

Table 7: Fitted R2 value, Mean absolute percentage error (MAPE), Mean absolute error (MAE), Root Mean
Square Error (RMSE) of different models for late blight of potato in the different year.

2018

Model R2 MAPE MAE RMSE AIC BIC
Exponential 0.9699 0.0367 1.1629 1.3872 79.342 82.476

Monomolecular 0.9926 0.0192 0.5504 0.6860 51.768 55.946
Logistic 0.9942 0.0169 0.4801 0.6069 46.621 50.800

Gompertz 0.6990 0.1795 4.9350 5.9247 142.319 146.497

2019

Exponential 0.9711 0.0548 1.3807 1.6701 118.045 122.147
Monomolecular 0.9879 0.0274 0.8545 1.0789 94.702 100.172

Logistic 0.9833 0.0353 1.0350 1.2716 104.236 109.705
Gompertz 0.9856 0.0315 0.9500 1.1791 99.856 105.325

2020

Exponential 0.9781 0.0374 1.1841 1.3772 80.939 85.117
Monomolecular 0.9729 0.0352 1.3452 1.5302 85.461 89.639

Logistic 0.9782 0.0373 1.2024 1.3740 79.037 82.171
Gompertz 0.9756 0.0356 1.2940 1.4572 83.409 87.588

2021

Exponential 0.5500 7.1765 3.4213 1.8737 18779.750 18783.960
Monomolecular 0.9971 0.0114 0.3656 0.4197 41.050 46.655

Logistic 0.9959 0.0135 0.4279 0.4991 51.435 57.040
Gompertz 0.9966 0.0121 0.3840 0.4537 45.720 51.325

2022

Exponential 0.9755 0.0440 1.2423 1.4778 78.380 81.367
Monomolecular 0.9919 0.0228 0.7215 0.8519 58.347 62.330

Logistic 0.9892 0.0283 0.8462 0.9790 63.910 67.893
Gompertz 0.8285 0.1387 4.0580 4.5272 125.162 129.145



Vaidheki et al., Biological Forum – An International Journal 14(4a): 297-306(2022) 302

Estimated parameter is significantly contributed to the
fitted nonlinear models by validated that 95%
confidence interval results showed that almost all of the
estimated parameters are significantly contributed to the
fitted nonlinear models at 5% significant level.
From the above table it can be concluded that for potato
late blight in 5 year data, all the models have given
good fit and their R2 values are more or less
approximately similar. R2 values gives best fit of
monomolecular model for 2019, 2021, 2022 and
logistic model for 2018 and 2020. From the above table
we can say that for potato data, monomolecular model
gives the lower AIC and BIC values for 2019, 2021,
2022 followed by Logistic  model gives the lower AIC
and BIC value for 2014, 2018 and 2020.
It is well known that R2 is inappropriate when used for
demonstrating the performance or validity of a certain
nonlinear model. We have supplemented it with other
methods such as AIC, BIC, EMS, MAE, MAPE etc.
Monomolecular model produces a smaller Mean
absolute percentage error   (0.0274, 0.0114, 0.0228 in

the year of 2019, 2021, 2022) and Logistic model
model 0.0169, 0.0373 in the year 2018, 2020). From
the above table of RMSE value, we can see that lowest
value found for monomolecular model (1.0789, 0.4197,
0.8519 in the year 2019, 2021, 2022) and Logistic
model produces smallest value for (0.6069 and 1.3740
in the year 2018, 2020)
In addition, the monomolecular and logistic model was
best fitted for the disease progression from the rest of
models when tested with the two tests (Akaike
Information Criterion and the Bayesian Information
Criterion) for each year of the potato late blight.
Disease progress rate of potato Late Blight.
Monomolecular and Logistic model was well fitted for
the disease progress of each potato Late Blight year and
hence, disease progress rate was obtained by regressing
the Late Blight incidence overtime after data was fitted
to the Monomolecular and Logistic model. For
Monomolecular model for the year 2017, 2019, 2021,
2022 the highest disease progress rate was calculated
from the year 2022 (Table 8) (Van der Plank, 1963).

Table 8: Disease progress rate of potato Late Blight disease on Monomolecular Model.

Model year Disease growth rate Percent disease growth rate

Monomolecular model

2019 0.023 2.263

2021 0.020 2.017

2022 0.032 3.168

Logistic model

2014 0.056 5.606

2018 0.077 7.677

2020 0.046 4.616

Area under disease progress curve (AUDPC). The
highest AUDPC value was recorded from year 2021
(1900.682% - day). However, the lowest value was
recorded from the year 2018 (1451.462% - day) (Table
1). This result indicated that the lowest disease
epidemic was calculated from the year 2018. This

might be due to the fact the year posse a resistance gene
(R) to Potato Late Blight disease. Because, once Late
blight is established in the area, the use of resistant
varieties or management practice is the most effective
means to manage this disease (Grunwald et al., 2001).

Table 9: AUDPC of Late Blight disease on Potato in the year 2017-2021.

Year AUDPC rAUDPC

2018 1451.462 18.85016

2019 1888.036 22.21219

2020 1456.485 19.68223

2021 1900.682 25.6849

2022 1494.304 18.4482

Empirical models for Late Blight of potato. The
basic feature of the forecasting method described in this
models is that the predictions are made from charts of
the temperature, relative humidity and rainfall instead
of from field surveys for the presence of the disease or
a general impression of the weather. The presence of
the disease in fields where the environmental conditions
are especially favorable for late blight does not
necessarily mean that an epiphytotic is starting, and yet

it may be so alarming that general spraying or dusting
would be advised
The purpose of the present study was to find the most
reliable method of forecasting the disease for northern
parts of West Bengal. Three systems were selected to
describe the occurrence of late blight epidemic by
combination of weather conditions factors (Percent
disease Incidence).
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Fig. 2. AUDPC of Late Blight disease on Potato in the year 2018.

Fig. 3. AUDPC of Late Blight disease on Potato in the year 2021.

Beaumont System. The first system was Beaumont
(1947) system, which combines between minimum

temperature 10°C and minimum RH 75% for at least 48
hours.

Table 10: Beaumont system of Potato late blight model in the year 2018-2022.

Beaumont System

Year Observed DAP Predicted DAP R2 Adjusted R2 RMSE

2018
January 10 January 14 0.747351

0.717628
4.27829

2019 January 11
January 19 0.793275

0.777373
6.95996

2020 January 20
February 5 0.447069

0.385632
6.249096

2021
January 2 January 15 0.07125

0.002454
12.29116

2022 January 25 February 13
0.476006 0.41436 6.639451

Cook system. The second system was Cook (1947)
system (Moving 7-day), which combines between

rainfall at least 3 mm and 7-day average daily
temperature not more than 23.9°C.
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Table 11: Cook system of Potato late blight model in the year 2018-2022.

Cook System

YEAR Observed DAP Predicted DAP R2 Adjusted R2 RMSE

2018
January 10 January 19 0.64181

0.566355
5.094113

2019 January 11
January 15 0.834091

0.821328
6.235129

2020 January 20
February 3 0.703846

0.67094
4.573418

2021
January 2 January 21 0.027594

-0.04285
12.57672

2022 January 25 February 11
0.487841 0.427587 6.564042

HYRE System. The third system was Hyre and Hyre &
Bonds’s system (Hyre, 1954). This method involved
"moving" graphs, as developed by Hyre. An initial

outbreak of blight would be forecast by 10 consecutive
days favorable for blight and a forecast of continuing
blight-favorable weather.

Table 12: Hyre system of Potato late blight model in the year 2018-2022.

HYRE System

Year Observed DAP Predicted DAP R2 Adjusted R2 RMSE

2018
January 10 January 12 0.710197

0.642313
4.788862

2019 January 11
January 15 0.902035

0.894499
4.791223

2020 January 20
February 3 0.67767

0.641855
4.771253

2021
January 2 January 19 0.000428

-0.07099
12.75118

2022 January  25 February 9 0.436105 0.369765 6.8876

The forecasts are for epiphytotics that affect the whole
areas and do not apply to minor or local outbreaks of
the disease. Even when most of an area is entirely free
of the disease, local outbreaks may occur in individual
fields if they are on low land, surrounded by high

windbreaks or have been in the path of a succession of
local showers.
All these models showed the partial occurrence of the
Late Blight Disease Incidence, so, we can conclude that
all these model cannot fit for this region.

Fig. 4. Beamount system of Late blight model in the year 2018.
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Fig. 5. Cook system of Late blight model in the year 2022.

Fig. 6. Hyre and Bond’s system of Late blight model in the year 2022.

CONCLUSION

The relatively cool nights during December and
January within potato growing area makes a big drop
for blight occurrence. There was a big problem in these
seasons. With the moving-graph method blight would
always have been forecast before it occurred, although
in some cases it was first observed quite a while after
the first favorable period. Based on the results non
linear regression models were the most appropriate for
description the disease progress data. Late Blight was
expected to appear within 7-10 days after ten
consecutive disease incidence by the Beamount, Cook
and Hyre & Bond’s system.

FUTURE SCOPE

The research being done aims to model the progression
of a disease over time in a particular setting. Here, we
would propose that comparing the incidence of late
blight on several sites or different types of potatoes
provides higher precision than comparing it on a single
place. The most accurate data are obtained from a
weather observatory installed in a field of potatoes.
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